US009229933B2

a2z United States Patent (10) Patent No.: US 9,229,933 B2
Campbell et al. (45) Date of Patent: Jan. 5, 2016
(54) SYSTEM, METHOD AND PROGRAM FOR 6,772,202 B2 82004 Wright
MANAGING FILE DOWNLOADS 6,912,586 B1* 6/2005 Achtermannetal. ... 709/232
7,047,314 B2 5/2006 Sato et al.
. 2002/0103915 Al* 82002 Shustercccccecvvuenee 709/229
(75) Inventors: Daniel Allen Campbfell, Longmont, CO 5003/0031178 Al 2/2003 Haeri of al.
(US); Robert Franklin Pryor, Lynn 2003/0050074 Al 3/2003 Kogiantis et al.
Haven, FL. (US); John Bradley 2003/0058804 Al* 3/2003 Salehetal. 370/254
Simmons, Westminister, CO (US) 2003/0084165 Al 5/2003 Kjellberg et al.
’ ’ 2004/0088427 Al 5/2004 Purdy
N . . . 2006/0069775 Al* 3/2006 Artobello ctal. 709/225
(73) Assignee: Internatl(fnal Business Machines 2006/0130107 Al* 6/2006 Gonder et al. .oovvvo... 725/110
Corporation, Armonk, NY (US) 2006/0137009 Al 6/2006 Chesla
(*) Notice: Subject to any disclaimer, the term of this * cited by examiner
patent is extended or adjusted under 35
U.S.C. 154(b) by 1150 days. Primary Examiner — Joon H Hwang
Assistant Examiner — Sherman Lin
(21) Appl. No.: 11/612,575 (74) Attorney, Agent, or Firm — Schmeiser, Olsen & Watts,
. LLP; David Quinn
(22) Filed: Dec. 19, 2006
57 ABSTRACT
(65) Prior Publication Data 7
System, method and program for managing download of a
US 2008/0147876 Al Jun. 19, 2008 file. A current request to establish a session is received. In the
(51) Int.Cl session, there is a request to download the file beginning at a
G0;$ F 1 5/16 (2006.01) specified location after a start of the file. The current request
GO6F 17/30 (2006:01) does not specify a fixed length of the requested download. A
HOIW 402 (2009.01) length ofthe file to be downloaded is estimated based on prior
H04L 29/08 (2006.01) requests to download the file beginning at other respective
(52) U.S.CL locations. In response to the current request, the estimated
CPC GOGF 17/30011 (2013.01); HO4L 67/02 length of the file is downloaded beginning at the specified
(2013.01); HO4L 67/06 (2013.01); HO4L 67/18 location. In response to downloading the estimated length of
(2013.01); HO4W 4/02 (2013.01) the file beginning at the specified location, the download of
(58) Field of Classification Search the file is suspended for a time window. If the session corre-
CPC ettt HO04L 67/06 sponding to the current request is not terminated within the
USPC oo 709/203,232 time window, then download of the file is automatically
See application file for complete search history. resumed following the length in further response to the cur-
rent request. If the session corresponding to the current
(56) References Cited request is terminated within the time window, then download

U.S. PATENT DOCUMENTS

of'the file is not automatically resumed following the length in
further response to the current request.

18 Claims, 4 Drawing Sheets

}/\310

5,946,465 A * 8/1999 Chmielewskietal. ... 709/226
6,460,087 B1* 10/2002 Saitoetal.coooo. 709/236

ONNECTION

'DROPPED BY REQUESTING

‘GLIENT BEFORE END OF
FILE REACHED 7

{JumMP TO STEP 220 |

'RECORD BYTES SENT RiNI
RECORD TIME SENT RaTi

COMPUTE SEQUENTIAL RANGE

AR = Rngi+1 TO RnSH+RnNI (INCLUSIVE)
ADD RATITOTo

INCREMENT No.

LOOR BAGK TO STEP 200

U.S. Patent Jan. 5,2016 Sheet 1 of 4 US 9,229,933 B2

CLIENT COMPUTER

f—21 /,—22 F23 [—24

CPU| |[O/S| [RAM| [ROM

N2

APPLICATION [—~27

26

| ———20
TCP/IP
INTERNET 30
TCP/IP 72
FILE DOWNLOAD L~ 60
5o MANAGEMENT PROGRAM
N\ .

FILE FILTER

45——\

DATA
FILE MANAGEMENT
FILE

CPU| |O/S| |RAM| [ROM

k41 k42 k43 L44 60

FILE SERVER COMPUTER

7

FIG. 1

Sheet 2 of 4

U.S. Patent Jan. 5,2016

START

SERVER 40 WAITS FOR AND RECEIVES NEXT
CONNECTION/DOWNLOAD REQUEST SPECIFYING IP
ADDRESS OF REQUESTOR, FILE NAME, START LOCATION

US 9,229,933 B2

200

OF DOWNLOAD, AND OPTIONALLY SEGMENT LENGTH.

DOWNLOAD SEGMENT
SPECIFIED ?

204

203
(-—-

DOWNLOAD REQUESTED
SEGMENT

r 205

LOOKUP IP IN
LIST OF CURRENT IP'S. IS

SET TOTAL TIME, Tc=0
TOTAL CONNECTIONS Nc =0

IP FOUND ?

YES
206

NO
YES
208

IS OFFSET, YES

SET IPt TO TRUE FOR THIS IP

l JUMP TO STEP 300

Sc, IN A SEQUENTIAL
RANGE ?

PROGRAM INITIALIZES A SEGMENT
DOWNLOAD Rn CONSISTING OF

RnIP = IP OF CALLER

RnSi = Sc, OFFSET OF REQUEST,
RnNi =0 - BYTES TO BE SENT
RnTi = TIME TO SEND Ni BYTES
RnQ = SEQUENTIAL RANGE

lL——210

-

DROPPED BY REQUESTING CLIENT
BEFORE END OF FILE

PROGRAM BEGINS DOWNLOADING | —__ 212
BYTES STARTING AT OFFSET Sc
215
214 f
CONNECTION NO CONTINUE DOWNLOAD FILE

UNLESS END OF FILE REACHED
REMOVE Rn FROM IP LIST

REACHED ?

TO STEP 218

FIG. 2(A)

U.S. Patent Jan. 5,2016 Sheet 3 of 4 US 9,229,933 B2

FROM STEP 214

IS
IP TRACKED ?

YES

LOOP BACK TO STEP 200

RECORD BYTES SENT RnNi[.— 229
RECORD TIME SENT RnTi

Y

COMPUTER SEQUENTIAL RANGE

RnQ = RnSi+1 TO L—— 221
RnSi = RnNI (INCLUSIVE)
SET Cs = RnSi

ADDRnTiTOTc |~ 227

INCREMENT Nc /" 225

224 PROGRAM 60 EXPECTS THIS
DOWNLOAD ID WILL HAVE
YES VARIABLE BYTE SEGMENTS
SO DON'T TRACK THIS IP.
SET IPt=FALSE LOOP BACK

IS
Cs>1 MEGABYTE 7?7

TO STEP 200
LOOP BACK TO STEP 200
COMPUTER RCs OF CONNECTION |— 300
RCs = Sc-RnSi
302
NO]
IS RCs < Cs ? »| GO TO STEP 400
YES
SET Cs =RCs 304
306
NO N
ISCx>07? »| GO TO STEP 400
YES 308
_ YES SET CX=0
ISCx=Cs? GO TO STEP 400
NO

TO STEP 310 FIG 2(B)

U.S. Patent Jan. 5,2016 Sheet 4 of 4 US 9,229,933 B2

FROM STEP 308

ASSUME CLIENT HAS CHANGED REQUIRED

SEGMENT SIZE. TAKE A CONSERVATIVE | ~310
APPROACH REMOVE IP FROM LIST OF IPS AND

RESTART COMPUTATION OF REQUIRED SEGMENT

'

| GO TO STEP 208 |

INITIATE DOWNLOAD OF FILE | ———400
BEGINNING AT START ADDRESS Sc

!

SEND JUST Cs BYTES TN 402
SET TIMEOUT = DELTA + Tc/Nc

404
YES

CONNECTION
DROP BEFORE
TJIMEOUT ?

= JUMP TO STEP 220

CONTINUE SENDING BYTES }/\ 406

408

CONNECTION
DROPPED BY REQUESTING
CLIENT BEFORE END OF
FILE REACHED ?

JUMP TO STEP 215

RECORD BYTES SENT RnNi
RECORD TIME SENT RnTi
COMPUTE SEQUENTIAL RANGE L—~ 410
RnR = RnSi+1 TO RnSi+RnNi (INCLUSIVE)
ADD RnTi TO Te

INCREMENT N¢
SET Cx = Cs WHERE Cx IS THE | -412
EXPECTED Cs OF THE NEXT REQUEST

SET Cx = RnNi 414

| Loop BACK TO STEP 200 | FIG. 2(C)

US 9,229,933 B2

1

SYSTEM, METHOD AND PROGRAM FOR
MANAGING FILE DOWNLOADS

FIELD OF THE INVENTION

The present invention relates generally to computer sys-
tems and networks, and more specifically to management of
file downloads.

BACKGROUND OF THE INVENTION

It is well known for a client computer or application server
to request download of a file from a file server. In one mode of
operation, the requester establishes a connection with the file
server, identifies a file, specifies a start location for a down-
load, and requests download of the file. In response (assuming
the file server will permit the download), the file server begins
downloading the file from the specified start location. If the
file is lengthy, and the communication bandwidth is limited,
the download may take an appreciable time to complete. To
alleviate this problem, the requester can establish multiple
connections with the file server, and for each connection,
identify the file and a different, staggered start location for the
respective download and request download from the respec-
tive start location. For example, for one connection, the
requester can request download of the file beginning at start
location 0, for another connection the requester can request
download ofthe same file beginning at start location 5000, for
another connection the requester can request download of the
same file beginning at start location 10,000. Generally, this
will expedite the download, especially if there are parallel
communication paths from the file server to the requester.
Ideally, when establishing multiple connections for download
of the same file in segments in parallel, the requester will
specify the segment length of each download request, and the
segment length for each connection will extend to the start
location of the next download request. If the requester speci-
fies the segment length of the download for a connection, the
file server downloads the specified segment beginning at the
specified start location. However, if the requester does not
specify the length of the download, the file server will begin
downloading at the start location and continue downloading
until receiving an “end connection” notification from the
requester. This will result in wasted (redundant/overlapping)
download when the file server does not receive the “end
connection” notification until after the file server downloads
a portion of the file that overlaps the download from the next
connection request. For example, if the first connection
request, starting at location 0, results in download of the first
6,000 bytes, this will overlap the next connection request
which starts at location 5,000, resulting in wasted/redundant
download of 1,000 bytes, i.e. bytes 5,000 to 6,000. In practice,
the total amount of overlap during transfer of a file can be
much greater.

Accordingly, an object of the present invention is to avoid
redundant downloads of parts of a file when the file is being
downloaded in parallel pursuant to multiple download
requests, and the requester does not specify the length of the
download for each request.

SUMMARY OF THE INVENTION

The present invention resides in a system, method and
program for managing download of'a file. A current request to
establish a session is received. Inthe session, there is a request
to download the file beginning at a specified location after a
start of the file. The current request does not specify a fixed

10

15

20

25

30

35

40

45

50

55

60

65

2

length of the requested download. A length of the file to be
downloaded is estimated based on prior requests to download
the file beginning at other respective locations. In response to
the current request, the estimated length of the file is down-
loaded beginning at the specified location. In response to
downloading the estimated length of the file beginning at the
specified location, the download of the file is suspended for a
time window. If the session corresponding to the current
request is not terminated within the time window, then down-
load of the file is automatically resumed following the length
in further response to the current request. If the session cor-
responding to the current request is terminated within the
time window, then download of the file is not automatically
resumed following the length in further response to the cur-
rent request.

In accordance with a feature of the present invention, the
estimation of the length of the file to be downloaded is based
on a difference between successive download start locations
in respective download requests.

Inaccordance with another feature of the present invention,
the determination of the time window is based at least in part
on (a) measurement of an approximate time between receipt
of the previous request and termination of the session, or (b)
measurement of an approximate time between completion of
download of the length of the file beginning at the other
location and termination of the session.

BRIEF DESCRIPTION OF THE FIGURES

FIG.11is ablock diagram of a distributed computer system
which includes the present invention.

FIGS. 2(A), 2(B) and 2(C) form a flow chart of a file
download management program, according to the present
invention, within a file server of the distributed computer
system of FIG. 1.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The present invention will now be described in detail with
reference to the figures. FIG. 1 illustrates a distributed com-
puter system generally designate 10 which includes the
present invention. Distributed computer system 10 includes a
“client” computer 20 with a CPU 21, operating system 22,
RAM 23 and ROM 24 on a common bus 25, and storage 26,
according to the prior art. The “client” computer 20 can be
any computer which requests a file from a file server 40 (or
other server which directly or indirectly furnishes a file).
Client computer 20 also includes an application program 27
which requests a connection via Internet 30 with file server
40, and then requests download of a file 50 from file server 40.
The function of application 27 is not important to the present
invention, except that it requests download of a file. File
server 40 includes a CPU 41, operating system 42, RAM 43
and ROM 44 on a common bus 45, and storage 46 with files
including data file 50 and data management file 70, according
to the prior art. File server 40 also includes a known file
system 52 such as provided by an IBM AIX operating system
to implement actual access to file 50. File server 40 also
includes a file download management program 60 according
to the present invention to manage downloads of file 50 in
segments in separate connections to avoid overlapping/re-
dundant downloads. File download management program 60
uses file system 52 to perform the processes required to access
storage 46. File download management program 60 is stored
on computer readable storage media 46 for execution by CPU
41 via computer readable memory 43.

US 9,229,933 B2

3

Application 27 in client computer 20 can be a known
application, and requests download of a file such as file 50 in
either of two modes of operation. In one mode of operation,
application 20 establishes a connection with the file server 40,
identifies a file such as file 50 by URL that translates to a file
name, and thereby requests download of the file. In response
(assuming the file server 40 will permit the download based
on authentication and authorization of the requester), the file
server begins downloading the file from its beginning (under
management of program 60). If the file is lengthy, and the
communication bandwidth is limited, the download may take
an appreciable time to complete. To alleviate this problem,
application 20 can establish multiple connections with the file
server, and for each connection identify the file and a differ-
ent, staggered start location for the download and request
download from the respective start location. For example, for
one connection, application 20 can request download of the
file beginning at location 0, for another connection applica-
tion 20 can request download of the same file beginning at
location 5000, and for another connection application 20 can
request download of the same file beginning at location
10,000. Generally, this will expedite the download, especially
if there are parallel communication paths from the file server
40 to the requester 20. Ideally, when establishing multiple
connections for download of the same file in segments in
parallel in different connections, application 20 will specify
the segment length of each download request, and the length
will reach but not overlap the next download request segment.
In the foregoing example, ideally application 27 would
specify a segment length of 5,000 bytes for the download
request beginning at start location 0, and a segment length of
5,000 bytes for the download request beginning at start loca-
tion 5,000. However, if application 20 does not specify the
length of each download request, then application 20, after
receipt of the intended segment (that reaches but does not
overlap the next download request segment), may disconnect
the connection to file server 40 to terminate the session and its
download. (As known in the art, connections are kept open or
closed by either the client or the server. When either the client
or server wants to stop a transfer it “closes/drops” the con-
nection without notification to other end.)

According to the present invention, server 40 under control
of file download management program 60, detects when
application 20 has established multiple sessions with server
40 and makes multiple requests for download of the same file
from different start locations. If application 20 does not
specify the length of each download request in the same file,
server 40 computes the difference between adjacent start
locations for successive download requests, and initially
assumes that each download request is for a segment of that
difference in length. In the foregoing example, where appli-
cation 20 established three connections with server 40 and
requested download from start addresses 0, 5,000 and 10,000,
program 60 will assume that each download request is for
5,000 bytes, because that is the difference in start locations
between the successive download requests. For the download
requests that start at start addresses 0 and 5,000, program 60
will initiate download of 5,000 bytes because that is the
difference between successive start locations for adjacent
download requests, and then pause. As for the download
request beginning at start location 10,000, the server 40 will
initially download 5,000 bytes beginning at start location
10,000 and then pause. If server 40 receives, within a prede-
termined time window after download of the last of the 5,000
bytes of the download request beginning at location 0, an end
connection request from application 27 corresponding to the
connection which requested the download starting at location

10

15

20

25

30

35

40

45

50

55

60

65

4

0, then that is the end of the download for the first download
request. This will avoid redundant download of a portion of
the file, such as bytes 5,000-6,000, that overlaps that of the
next download request beginning at start location 5,000.
Likewise, if server 40 receives, within a predetermined time
window after download of the last of the 5,000 bytes of the
download request beginning at location 5,000, an end con-
nection request from application 27 corresponding to the
connection which requested the download starting at location
5,000, then that is the end of the download for the second
download request. This will avoid redundant download of a
portion of the file, such as bytes 10,000-11,000, that overlaps
that of the next download request beginning at start location
10,000. Assume that the file is 17,000 bytes. In such a case, in
response to the third connection/download request beginning
at start location 15,000, server 40 will download the first
5,000 bytes beginning at location 10,000 and then pause.
Because application 27 is expecting the complete file in
response to the third download request, application 27 will
not disconnect the connection after receipt of byte 15,000. So,
after download of the byte 15,000, server 40 will pause as
noted above, because server 40 will assume that the download
request was for 5,000. However, because application 27 will
not disconnect the connection until receipt of the complete
file, after the predetermined time window, server 40 will
resume download of the file until the end, i.e. byte 17,000.
Then, server 40 will disconnect the connection because it has
sent the complete file.

FIGS. 2(A), 2(B) and 2(C) illustrates operation and func-
tion of file download management program 60 in more detail.
The following definitions of terms and parameters are helpful
to understand FIGS. 2(A), 2(B) and 2(C).

“Sequential Request™: If a server has seeked to a location, ‘L,
and sent ‘N’ bytes then a Sequential Request is a subsequent
request for any offset that is inside L+N which includes L+N.
For example, if there was a request to seek to location 300000
and the server sent 45000 bytes then a subsequent request to
seek to any location of 300001 to and including 345000 is
referred to as a ‘sequential request’. The range between
300000 and 345001 is defined as the Sequential Range.
Each “non-sequential” Request is stored with the following
six items:

IP—IP address of request

IPt—TRUE if we are tracking this IP and following this

invention IPt. (Program 60 detects conditions that
should not be tracked and thus treats a request with only
an offset as actually wanting all the rest of the bytes of
the file and thus not try to estimate or anticipate the
requested length.)

Si—Offset of request

Ni—Bytes sent for request

Ti—Time between request and ‘dropped’ connection.

Q—Sequential range
This collection of items can be designated as Rn. A client
computer may open up several non-sequential requests, and
program 60 will designate these as R0, R1, R2, etc. A client
computer will often open up several connection/download
requests on large files where each Rn is a separate download
thread and each thread will download a large part of the file by
doing a series of small sequential segments. Furthermore Si
for Rn can be designated as RnSi. For example, program 60
will store the last Offset Request received for R0 and refer-
ence it as R0Si. When program 60 receives a new request with
anew offset, program 60 will reference the “new offset” as Sc
for Current Segment Offset.

Program 60, as illustrated in FIGS. 2(A-C), determines the
client computer’s real request size, which is labeled as Cs. Cs

US 9,229,933 B2

5

is always set to the smallest calculated, prior Cs. For example
if Cs has a range 0£40000, and the server receives a sequential
request of 305000 for a “sequential range” of 300000 to
345001, then program 60 calculates Cs as the lesser of 40000
and 5000 (305000-300000), and sets Cs to 5000.

When the server receives its first request from an IP address
(such as client computer 20) for a new file, the server sets
Total connect time, Tc=0, and total connections, Nc=0. Note
that Tc/Nc is the average time it takes for client computer 20
to (a) receive its expected bytes, (b) drop the connection to
program 60, and (c) for program 60 to detect the dropped
connection.

In step 200, program 60 receives a request to establish a
connection with file server 40 and to download part or all of a
file. The request includes in the header the IP address of the
requester, and also a download request Ri, the start address Si
(where =0 during the initial connection/download request
from this IP address) of the requested download and the name
of'the file to be downloaded. By way of example, application
27 in client computer 20 made the request, and the IP address
indicates client computer 20. The request may or may not
specify the segment length of the requested download (deci-
sion 202). If so (decision 202, yes branch), then program 60
initiates access and download of the specified segment length
of'the named file beginning at the specified start location (step
203), and loops back to step 200. The server will not send
more bytes than the size of the file.

However, if the download request does not specify a down-
load segment length (decision 202, no branch), then program
60 compares the IP address of the current requester to the IP
addresses of previous requesters within an Active List of I[P
addresses (decision 204). If this is the first download request
from this IP address (decision 204, no branch), then program
60 initializes the total connect time, Tc, and total number of
connections, Nc (step 205) and then initializes parameters
used to evaluate and manage the algorithm step 210. Then
program 60 requests the data from storage 46 beginning with
the start address, and initiates download of the data to client
computer 20 as program 60 accesses/fetches the data from
storage (step 212). To access the data from storage 46 in step
212, program 60 makes requests for the data from file system
52, such as that provided by IBM AIX operating system,
which handles the low level processes to access and return the
data from storage 46. As program 60 (via server 40) down-
loads the data to client computer 20, program 60 periodically
checks if the connection to the client computer 20 is still
active (decision 214). As long as program 60 does not detect
a lost connection, program 60 will continue to access and
download the file (step 215). In some cases, program 60 will
download the complete file without detecting a lost connec-
tion. In such a case, program 60 will stop the access of storage
46 and stop the download at the end of the named file (step
215). However, in other cases (decision 214, yes branch),
program 60 will detect a lost connection before completion of
the download of the named file. In such a case, program 60
will check the IP address of the requester to see if it is being
tracked (as explained below) (decision 218). If the IP address
of the requester is currently being tracked (decision 218, yes
branch), program 60 records how many bytes RnNi were sent,
and the time, RnTi, from the time ofthe connection/download
request until recognition that the connection has been
dropped (step 220). Next, program 60 computes the segment
size to send per connection, Cs, and the sequential range,
RnQ, based on the bytes that program 60 has sent at this point
(step 221). Program 60 then adds RnTi to Tc and increments
Nc in data management file 70 (step 222). If Cs exceeds a
discovered threshold (for example, one Megabyte) (decision

10

15

20

25

30

35

40

45

50

55

60

65

6

224), then client computer 20 has a high probability that the
segment size will vary from request to request. In such a case,
program 60 will set IPt to FALSE and this IP address/re-
quester will no longer be tracked (step 225), and then program
60 will loop back to step 200. If Cs is not greater than the
discovered threshold (for example, one Megabyte) (decision
224, no branch), then the IP address will continue to be
tracked, and program 60 goes back to step 200 and waits for
another connection.

Refer again to step 200, where program 60 waits for and
receives the next connection/download request. The request
includes in the header the IP address of the requester, and in
the body of the request the download segment offset Sc, and
the name of the file to be downloaded. By way of example,
application 27 also made this next request, and the IP address
indicates client computer 20. The request may or may not
specify the segment length of the requested download. If the
download request specifies the segment length (decision 202,
yes branch), then program 60 downloads the specified seg-
ment beginning at the specified start location. [fthe download
request does not specify the segment length (decision 202, no
branch), then program 60 compares the IP address of the
current requester to the IP addresses of previous requesters in
the active list (decision 204). If this is not the first connection/
download request from this IP address (decision 204, yes
branch), then program 60 determines if the IP address is
currently being tracked (decision 206). If the IP address is
currently being tracked (decision 206 yes branch), then pro-
gram 60 checks if the segment offset Sc is a sequential offset
as defined earlier (decision 208). If it is (decision 208, yes
branch), then program 60 jumps to step 300. Program 60
calculates the segment size for this IP address and names the
segment size “RCs” for Request Client Segment. This will be
the positive difference between the offset of the first request
(typically location zero of the file) and the location of the
current request start address, e.g., current offset location, Sc,
minus previous offset location, RnSi. If the segment actually
received and processed by client computer 20 during the first
connection RCs is less than the total segment sent for the first
connection, Cs, (decision 302, yes branch), the new set of
bytes will overlap some of the bytes already sent. This new
request is a “sequential request”, and program 60 determines
if the bytes to send, Cs, should be adjusted based on this new
request, as follows. Program 60 assumes that RCs is the
segment size that client computer 20 stored during the first
transfer, and assumes it to be the segment size the client
computer will want for this transfer event (step 304). If this
assumption is correct (decision 306, no branch), then server
40 will send RCs bytes (step 400) and for each subsequent
connection received from client computer 20 (decision 302
no branch). If this assumption is not correct, at some point the
value of Cx will be greater than zero (decision 306, yes
branch). Cx is set whenever the server sends more than RCs
bytes (see steps 404 through 414 as described later). If Cx is
equal to Cs (decision 308 yes branch), the client computer 20
did not disconnect the connection in the expected time (deci-
sion 404 no branch), and program 60 sent extra bytes that the
client computer did not receive or did not store. In either case,
program 60 will continue the download using the original Cs
calculation so program 60 sets Cx to 0 and proceeds to down-
load the file (step 400). If Cx is not equal to Cs (decision 308
no branch), then program 60 proceeds to step 310 to recom-
pute the segment size as if the current request is the first
request from this client. However, in the current example,
decision 306 is “no”, i.e. Cx is not greater than “0”, and
program 60 proceeds to step 400.

US 9,229,933 B2

7

In step 400, program 60 begins to download the file from
the start address Sc of this connection/download request, even
if it overlaps the end portion of the file downloaded during the
prior connection/download request RnSi. The reason for
repeating the download of the end portion of the file down-
loaded during the prior connection/download R0 is that the
client computer 20 dropped the connection and never
received these end portion bytes. Next, program 60 sets a
time-out equal to Tc/Ne+Delta, where “Delta” is a predeter-
mined time period or percentage of the average time, Tc/Nc
(step 402). Ordinarily, the time-out will be sufficient for pro-
gram 60 to detect a dropped connection (decision 404, yes
branch) after accessing and downloading (from start location
Sc) the Cs download segment because the client computer 20
will drop the connection after receiving the bytes it was trying
to get. Next, program 60 will jump to step 220 and collect the
data for this transfer and setup for another connection. This is
the typical and expected path for the majority of connection/
download requests.

However, occasionally, the time-out will expire (decision
404, no branch) and in this case, program 60 will resume
sending bytes (step 406) until the client computer drops the
connection (decision 408, yes branch) or program 60 down-
loads the end of the file (decision 408, no branch). Assuming
the client computer dropped the connection before the end of
file was reached, program 60 records the bytes, RnNi, the
time, RnTi, computes the sequential range, adds the time to
Tc, and increments the number of connections (step 410).
Because more than Cs bytes were sent in this connection,
program 60 stores the value of Cs in Cx (step 412). Also,
program 60 will set Cx=RnNi. In the next connection/down-
load request, program 60 will recalculate Cs in steps 300
through 304. In decision 306, program 60 will realize that the
last connection experienced a time-out and sent extra bytes.
In decision 308, program 60 will learn if the client computer
20, has shifted its expected segment request (in which case,
decision 308, no branch). For example assume Cs was origi-
nally computed to be 5000 and many segments were sent
through the ‘expected path’ described above. However at
some point decision 404, no branch occurs, and the total bytes
sent were 28000 for that connection. In that case, program 60
would set Cx to 5000 (step 41) and Cs to 28000 (step 414).
Assume in this example that the client computer 20 has
changed the segment size it is expecting to 20000. Conse-
quently, in the next request, program 60 will proceed to deci-
sion 302, yes branch and set Cs (step 304). Cx will >0 (deci-
sion 306 yes branch) and Cx (5000) is not equal to the new Cs
(20000), resulting in decision 308, no branch. When client
shifts the segment size, program 60 takes a conservative
approach and removes the [P address from the active list of [P
addresses, and deletes all Rn’s for this IP address. When the
next connection/download request arrives, program 60 will
treat it as a brand new connection requesting download for the
first time.

Program 60 effectively handles a situation where connec-
tion/download requests arrive at server 40 out of order, for
example, first is a connection/download request at start loca-
tion X, second is a connection/download request at start loca-
tion X+D+D, and third is a connection/download request at
start location X+D. In such a case the difference in start
locations between the start locations of the first and second
connection/download requests is D+D, whereas the proper
download length should be D. Program 60 handles situations
like this in either of two ways. Program 60 maintains a history
of start locations in connection/download requests, and can
estimate the length for a current download request as equaling
the smallest positive difference between the start location of

40

45

55

8

the current connection/download request and the start loca-
tion of any prior connection/download requests. For example,
there are prior connection/download requests with start loca-
tions of 0,300000,20000,100000 in chronological order, and
a current connection/download request has a start location of
21000. In this example, program 60 will determine the esti-
mated length for the current connection/download request is
1000 bytes based on 21000-20000. However, if the smallest
difference is outside the “sequential range” of any prior con-
nection/request, then program 60 treats the current connec-
tion/download request as a first request from the client com-
puter, and continues to download the file until the client
computer terminates the connection. The following explains
the foregoing example in more detail.

In the foregoing example, the first connection/download
request started at location 0, and in this example, in response
to this first request, server 40 sent 40000 bytes in 10 seconds
before client computer 20 terminated the connection. At this
point, ROSi=0, RONi=40000, R0Ti=10, and R0OQ=0 to
400001. Next, program 60 adds ROTi to Tc and increments
the number of connections, Nc=1, to calculate the average
TIME-OUT. Because Cs=0, program 60 will use the bytes
sent for this first connection as the first estimate for subse-
quent download requests, i.e. Cs=40000.

In the foregoing example, the second connection/down-
load request started at location 300000, and program 60 deter-
mines this is not a sequential request because it is beyond the
offset of the data sent in response to the first connection/
download request. Consequently, program 60 stores this in
R1Si and sends Cs=40000 bytes and waits Tc/Ne=10 sec-
onds+delta for a dropped connection. In this example, pro-
gram 60 assumes that 40000 bytes more than fulfills the actual
number of bytes the client wanted for this connection. The
time to drop the connection should therefore be about the
same, for example, 12 sec, R1Si=300000, R1Ni=40000,
R1Ti=12, and R1Q=300000-340001. Next, program 60 adds
R1Ti to Tc=22 and increments the number of connections,
Ne=2.

In this example, the third connection/download request
begins at start location 20000 which is inside the ROQ=0 to
40001. Consequently, program 60 sets Cs=20000, sends
20000 bytes and waits for a TIME-OUT=delta+11 seconds
(Tc/Ne or 22/2). If client computer 20 terminates the connec-
tion before the TIME-OUT expires, that is the end of the
download in response to the current connection/download
request. Program 60 then assumes that the client computer
wants 20000 bytes or less for each subsequent connection:
R0Si=20000, RONi=20000, R0Ti=12, R0Q=20000-40001,
Tc=33 and Nc=3.

In this example, the fourth connection/download request
begins at start location 100000 which again is outside the
sequential range of ROQ or R1Q, so program 60 stores this
start location as R3, and sends just 20000 bytes. Program 60
stores the number of bytes sent and the time, for example 11
seconds, R3Si=100000, R3Ni=20000, R3Ti=11,
R3R=100000 to 120001, Tc=44 and Nc=4.

In this example, the fifth connection/download request
begins at start location 21000 which is inside R0Q (20000-
40001). Next, program 60 calculates Cs as 1000 (21000-
20000). In this example, program 60 sends 1000 bytes and
client computer 20 ends the connection before the TIME-
OUT, for example at 11 seconds again, program determines
that it has fulfilled the client computer’s requirements. Con-
sequently, program 60 will subsequently use 1000 bytes as
the estimated length for all subsequent download/connection
requests, R0Si=21000, RONi=1000, R0Ti=11, R0Q=21000
to 22001, Tc=55 and Nc=5.

US 9,229,933 B2

9

To extent the foregoing example, assume that the sixth
connection/download request beings at start location 1000.
This start location is not inside any of the sequential ranges
for the prior connection/download requests, so program 60
stores the sixth start location as R4, sends 1000 bytes, and
waits for TIME-OUT+delta. If client computer 20 terminates
the current connection at 11 seconds again, then R4Si=1000,
R4Ni=1000, R4Ti=11, R4Q=1000 to 2001, Tc=66 and Nc=6.

To further extend the foregoing example, assume there are
32 connection/download requests with start locations every
1000 bytes from 100000 to 131000, and pursuant to each of
these connection/download requests, client computer 20 ter-
minates the connection within the time-out window and
server 40 sends 1000 bytes each time. Then, there is another
connection/download request with start location 132000, and
in response, server 40 sends 33000 more bytes before client
computer 20 terminates the connection. Thus, R3Si=132000,
R3Ni=34000, R3Ti=0, and R3Q=133000 to 167001. If the
next sequential connection/download request has start loca-
tion of 136000, then program 60 will assume that the segment
size has changed. Program 60 will determine that the segment
size is now 3000 bytes, i.e. 136000-133000. However, pro-
gram 60 does not know with sufficient certainty, the time-out
for this new segment because there has been such a change in
segment length. Consequently, program 60 will continue to
send bytes (without a pause) until client computer 20 termi-
nates the connection, as if this was a new IP and its first
connection/download request. Then, program 60 will wait for
the client computer to terminate the connection, and use the
elapsed time as the new Tc with an Nc of 1, but set Cs=3000
and use that for the next sequential segment request.

The IP address of the client computer may change from one
connection to another. The IP address used by program 60 is
but one technique for identifying the client computer. It is not
the only technique available. The present invention covers the
use of alternative methods to identify the client computer,
such as passing an client identifier on or in the URL itself.

Program 60 can be loaded into server 40 from a computer
readable media 71 such as magnetic tape or disk, optical
media, DVD, memory stick, semiconductor memory, etc. or
downloaded from the Internet via TCP/IP adapter card 72.

Based on the foregoing, a system, method and computer
program product for managing downloads have been dis-
closed. However, numerous modifications and substitutions
can be made without deviating from the scope of the present
invention. Therefore, the present invention has been disclosed
by way of illustration and not limitation, and reference should
be made to the following claims to determine the scope of the
present invention.

What is claimed:

1. A method for managing download of a file, the method
comprising:

receiving, by a server computer from a client computer, a

current request to establish a session to download the file
beginning at a specified location after a start of the file,
the current request not specitying a fixed length of the
requested download;

estimating, by the server computer, a length of a portion of

the file to be downloaded pursuant to the current request
based on previous requests to download the file begin-
ning at other respective specified locations and differ-
ences between the other respective specified locations in
succession;

in response to the current request, downloading, by the

server computer, the estimated length of the file begin-
ning at the specified location of the current request and
computing, by the server computer, a time window for

20

25

30

40

45

50

10

enabling the client computer to avoid a redundant down-
load of a portion of the file by terminating the session
within the time window, and in response to downloading
the estimated length of the file beginning at the specified
location of the current request and after said computing
the time window, automatically suspending, by the
server computer for the time window, additional down-
load of the file pursuant to the current request, wherein
said computing the time window comprises computing
the time window as equal to Tc/Nc+Delta, wherein Nc is
a total number of connections of the previous requests,
wherein Tc is a total cumulative connect time of the
previous requests, wherein the connect time of each
previous request is a time interval during which a respec-
tive portion of the file was downloaded, in response to
each previous request, beginning at the other respective
specified location specific to each previous request,
wherein Delta is a predetermined time period or a pre-
determined percentage of Tc/Nc, and wherein Nc is at
least 1;

ascertaining, by the server computer, whether or not the
session corresponding to the current request has been
terminated by the client computer within the time win-
dow;

if said ascertaining ascertains that the session correspond-

ing to the current request has not been terminated by the
client computer within the time window, then automati-
cally resuming, by the server computer, download of the
file pursuant to the current request from where download
of the file was suspended, and

if said ascertaining ascertains that the session correspond-

ing to the current request has been terminated by the
client computer within the time window, then not auto-
matically resuming, by the server computer, download
of the file pursuant to the current request from where
download of the file was suspended, wherein said not
automatically resuming download of the file avoids the
redundant download of the portion of the file.

2. The method of claim 1, wherein there is a uniform
difference between the other respective specified locations in
succession, and the estimated length equals the uniform dif-
ference.

3. The method of claim 1, wherein Nc is at least 2.

4. The method of claim 1, wherein said ascertaining ascer-
tains that the session corresponding to the current request has
not been terminated by the client computer within the time
window.

5. The method of claim 1, wherein said ascertaining ascer-
tains that the session corresponding to the current request has
been terminated by the client computer within the time win-
dow.

6. The method of claim 1, wherein the previous requests
comprise two or more previous requests to download respec-
tive portions of the file, wherein downloaded lengths of the
respective portions pertaining to the two or more previous
requests comprise at least two different downloaded lengths,
wherein the current request is a sequential request within a
sequential range of one previous request of the two or more
previous requests, and wherein the estimated length of the
portion of the file to be downloaded beginning at the specified
location of the current request is a smallest of: (i) a difference
between the specified location of the current request and the
beginning of the sequential range of the one previous request
and (ii) a smallest downloaded length of the respective por-
tions pertaining to the two or more previous requests.

7. A computer system for managing download of a file, the
computer system comprising: a CPU, a computer readable

US 9,229,933 B2

11

memory, and a computer readable storage medium storing
program code configured to be executed by the CPU via the
computer readable memory, wherein the program code com-
prises:
program instructions to receive, by a server computer from
aclient computer, a current request to establish a session
to download the file beginning at a specified location
after a start of the file, the current request not specitying
a fixed length of the requested download;

program instructions to estimate, by the server computer, a
length of a portion of the file to be downloaded pursuant
to the current request based on previous requests to
download the file beginning at other respective specified
locations and differences between the other respective
specified locations in succession;
program instructions, responsive to the current request, to
download, by the server computer, the estimated length
of the file beginning at the specified location of the
current request and to compute, by the server computer,
atime window for enabling the client computer to avoid
a redundant download of a portion of the file by termi-
nating the session within the time window, and in
response to download the estimated length of the file
beginning at the specified location of the current request
and after computation of the time window, to automati-
cally suspend, by the server computer for the time win-
dow, additional download of the file pursuant to the
current request, wherein said computing the time win-
dow comprises computing the time window as equal to
Tc/Ne+Delta, wherein Nc is a total number of connec-
tions of the previous requests, wherein Tc is a total
cumulative connect time of the previous requests,
wherein the connect time of each previous request is a
time interval during which a respective portion of the file
was downloaded, in response to each previous request,
beginning at the other respective specified location spe-
cific to each previous request, wherein Delta is a prede-
termined time period or a predetermined percentage of
Tc/Nc, and wherein Nc is at least 1;

program instructions to ascertain, by the server computer,
whether or not the session corresponding to the current
request has been terminated by the client computer
within the time window;

if the program instruction to ascertain ascertains that the

session corresponding to the current request has not
been terminated by the client computer, within the time
window, then the program code comprises program
instructions to responsively automatically resume, by
the server computer, download of the file pursuant to the
current request from where download of the file was
suspended, and

if the program instruction to ascertain ascertains that the

session corresponding to the current request has been
terminated, by the client computer, within the time win-
dow, then the program code comprises program instruc-
tions to responsively not automatically resume, by the
server computer, download of the file pursuant to the
current request from where download of the file was
suspended, wherein said to not automatically resume
download of the file is to avoid the redundant download
of the portion of the file.

8. The computer system of claim 7, wherein there is a
uniform difference between the other respective specified
locations in succession, and the estimated length equals the
uniform difference.

9. The computer system of claim 7, wherein Nc is at least 2.

10

15

20

25

30

35

40

45

50

55

60

65

12

10. The computer system of claim 7, wherein the program
instruction to ascertain ascertains that the session correspond-
ing to the current request has not been terminated by the client
computer within the time window.
11. The computer system of claim 7, wherein the program
instruction to ascertain ascertains that the session correspond-
ing to the current request has been terminated by the client
computer within the time window.
12. The computer system of claim 7, wherein the previous
requests comprise two or more previous requests to download
respective portions of the file, wherein downloaded lengths of
the respective portions pertaining to the two or more previous
requests comprise at least two different downloaded lengths,
wherein the current request is a sequential request within a
sequential range of one previous request of the two or more
previous requests, and wherein the estimated length of the
portion of the file to be downloaded beginning at the specified
location of the current request is a smallest of: (i) a difference
between the specified location of the current request and the
beginning of the sequential range of the one previous request
and (ii) a smallest downloaded length of the respective por-
tions pertaining to the two or more previous requests.
13. A computer program product for managing download
of a file, the computer program product comprising: a com-
puter readable hardware storage medium storing program
code, wherein the program code comprises:
program instructions to receive, by a server computer from
aclient computer, a current request to establish a session
to download the file beginning at a specified location
after a start of the file, the current request not specifying
a fixed length of the requested download;

program instructions to estimate, by the server computer, a
length of a portion of the file to be downloaded pursuant
to the current request based on previous requests to
download the file beginning at other respective specified
locations and differences between the other respective
specified locations in succession;
program instructions, responsive to the current request, to
download, by the server computer, the estimated length
of the file beginning at the specified location of the
current request and to compute, by the server computer,
atime window for enabling the client computer to avoid
a redundant download of a portion of the file by termi-
nating the session within the time window, and in
response to download the estimated length of the file
beginning at the specified location of the current request
and after computation of the time window, to automati-
cally suspend, by the server computer for the time win-
dow, additional download of the file pursuant to the
current request, wherein said computing the time win-
dow comprises computing the time window as equal to
Tc/Ne+Delta, wherein Nc is a total number of connec-
tions of the previous requests, wherein Tc is a total
cumulative connect time of the previous requests,
wherein the connect time of each previous request is a
time interval during which a respective portion of the file
was downloaded, in response to each previous request,
beginning at the other respective specified location spe-
cific to each previous request, wherein Delta is a prede-
termined time period or a predetermined percentage of
Tc/Nce, and wherein Nc is at least 1;

program instructions to ascertain, by the server computer,
whether or not the session corresponding to the current
request has been terminated by the client computer
within the time window;

if the program instruction to ascertain ascertains that the

session corresponding to the current request has not

US 9,229,933 B2

13

been terminated by the client computer within the time
window, then the program code comprises program
instructions to responsively automatically resume, by
the server computer, download of the file pursuant to the
current request from where download of the file was
suspended, and

if the program instruction to ascertain ascertains that the

session corresponding to the current request has been
terminated, by the client computer, within the time win-
dow, then the program code comprises program instruc-
tions to responsively not automatically resume, by the
server computer, download of the file pursuant to the
current request from where download of the file was
suspended, wherein said to not automatically resume
download of the file is to avoid the redundant download
of the portion of the file.

14. The computer program product of claim 13, wherein
there is a uniform difference between the other respective
specified locations in succession, and the estimated length
equals the uniform difference.

15. The computer program product of claim 13, wherein
N is at least 2.

16. The computer program product of claim 13, wherein
the program instruction to ascertain ascertains that the session

10

15

20

14

corresponding to the current request has not been terminated
by the client computer within the time window.

17. The computer program product of claim 13, wherein
the program instruction to ascertain ascertains that the session
corresponding to the current request has been terminated by
the client computer within the time window.

18. The computer program product of claim 13, wherein
the previous requests comprise tWo or more previous requests
to download respective portions of the file, wherein down-
loaded lengths of the respective portions pertaining to the two
or more previous requests comprise at least two different
downloaded lengths, wherein the current request is a sequen-
tial request within a sequential range of one previous request
of the two or more previous requests, and wherein the esti-
mated length of the portion of the file to be downloaded
beginning at the specified location of the current request is a
smallest of: (i) a difference between the specified location of
the current request and the beginning of the sequential range
of'the one previous request and a smallest downloaded length
of the respective portions pertaining to the two or more pre-
vious requests.

